Integrated Petrophysics – How to use Special Core Analysis with Modern Logs

 

Integrated Petrophysics – How to use Special Core Analysis with Modern Logs

Instructor Mark Deakin, PhD (Petrophysics)

Tailored In-House Course 3 to 5 days

Enquiry

Who Should Attend?

Petrophysicists, reservoir engineers, core analysts, geologists and engineers who build or use static or dynamic reservoir models.  Anyone with a year’s experience with core-log integration.  Bring your laptop with MS Excel.

IPSCAL slide example | Testimonials

saudi_Dammam-1

This course does more than calibrate your density log with core grain density and porosity. It starts with the essential techniques of core-log integration that are required to create compatible data sets suitable for special core analysis (SCAL) integration.  It goes on to integrate SCAL lab results with powerful, modern logs to show how key reservoir questions are answered more confidently and more quantitatively if these data are properly integrated. NMR, Dielectric, Cross Dipole sonic, 3D resistivity, Lithoscanner and MDT are some of the logs whose output is calibrated and welded into the fabric of a true, modern, integrated petrophysical evaluation.  Such an evaluation is robust, overdetermined and grounded in routine and special core analysis.  Integration techniques are explained in terms of the question being asked, the physical basis of the core and log data being used and the steps necessary to quantitatively integrate the relevant SCAL with logs and geo-models.  Like all the author’s “Integrated Petrophysics” courses a logical, systematic structure is followed which enhances understanding of the where, why and how of modern petrophysical data.  Lithology, porosity, saturation, permeability, natural fractures, FWL, TOC and mechanical properties for brittleness and fracturing are addressed, with the pertinent core and log data explained and integrated.

Lectures are interleaved with micro-practicals, videos, PetroDB-WEB demos, class practical’s, class discussions and timely recaps to achieve a dynamic and engaging training session – training which can be taken back to the office and applied immediately.  This course explains how to perform comprehensive core-log integration on legacy data but also arms you with the knowledge of what is and what is not critical to acquire in your reservoir, saving valuable time and money during drilling, completion and development.

Core-Log integration has been the central topic of the author’s Imperial College Ph.D. and 30 years of consulting, reading and lecturing on core-log integration.  It is also the central purpose of the PetroDB-WEB software, which expands essential core-log integration to SCAL and modern logging tools.

You Will Learn

  • How to acquire conventional and wireline core data – from mud systems to laboratory
  • The essential techniques of core-log integration
  • The major Special Core Analysis (SCAL) tests explained
  • The major Special Log measurements explained
  • How to identify the key data channels from modern logs which answer the questions your team is asking
  • The questions core-log integration answers that log analysis cannot
  • What integration techniques to apply to what special core analysis data – how to use your data!
  • How to objectively rank rival evaluation techniques
  • How to use legacy core data with the modern log data you have just acquired
  • How to use Rock Typing and PetroDB to estimate the core values you do not have
  • How to use interactive software to show how properly integrated SCAL and modern logs will impact your geo-model results

Course Content

Detailed Contents

  • Essential core-log integration
  • How to check routine core analysis data is fit for purpose
  • How to integrate data with different scales of measurement
  • Routine core porosity calibration of density, NMR, neutron and sonic logs. Select and merge
  • Routine core permeability calibration of NMR, porosity, HPV… etc.  Select and merge
  • Routine Dean Stark and other core saturations integration with Resistivity, Saturation-height(s), NMR, Dielecric, Sigma
  • Capillary pressure explained
  • Capillary pressure SCAL tests: centrifuge, porous plate, mercury
  • Lab to reservoir fluid conversions
  • How to check and correct lab Pc data
  • Reservoir Rock Typing (RRT): Why and how?  Facies, NMR, FMI, FZI, HFU. RRT without core.
  • Application of RRT during core-log integration
  • The engineer’s standalone core saturation height function
  • How to fit Pc data: Foil, J Function, Lambda, Skelt Harrison
  • Integrating core saturation height functions with logs: Resistivity, NMR, Porosity, Sigma, MDT
  • SCAL electrical properties CEC, m and n: use, abuse and correct implementation
  • Using RCA, SCAL and modern logs to solve the low resistivity pay problem
  • SCAL NMR lab tests: BFV, T2, T1 cutoffs, Qv experimental technique and results
  • Integration of SCAL NMR with logs, use, abuse and alternatives compared
  • SCAL Relative Permeability tests: steady vs. unsteady state
  • Integration of SCAL rel. perm data with log analysis for kw, ko and kg. Fractional flow
  • Do your results concur with field observation?  Calibration
  • Wettability: impact on capillary pressure, relative permeability and Sor
  • Is your reservoir non-strongly water wet?  What to do in the lab. What to do during integration.
  • What is the Residual Oil Saturation?
  • Daily Interactive Petrophysics (IP) and PetroDB-WEB demos
  • Excel Petrophysical Toolbox: All workshops, equations, evaluation templates

Instructor CV

Dr Mark Deakin is a consultant, author and lecturer in Petrophysical Data Integration. He holds a Ph.D. in ‘Integrated Petrophysics’ from London’s Imperial College, is an ex Amoco petrophysicist, and has more than 30 years’ experience, including 15 as a lecturer and director of PETROPHYSICS Pty Ltd. He has performed over 50 detailed reservoir studies, primarily in Southeast Asia’s difficult carbonate and stacked ‘low-contrast-pay’ reservoirs, keeping abreast of new technologies by technical reading, operations work, attending short courses and lecturing. Mark’s proven approach is to identify and rank reserves uncertainties, then guide companies toward defensible reserves via a process of targeted data acquisition, data-hierarchy and systematic integration. After his Ph.D. Mark authored the first public Integrated Petrophysics course which has evolved into the industry benchmark course for mainstream petrophysics.  Deakin also developed “Integrated Petrophysics for Carbonate & Fractured Reservoirs – A Roadmap”  and the powerful PetroDB-WEB core-log-test linked database evaluation for complex reservoirs. Deakin is a member of SPWLA with offices in Perth, Australia.

PS: This course for MODERN core-log integration!